Untitled Document
   
You are from : ( )  
     
Untitled Document
Untitled Document
 

International Journal of Information Technology & Computer Science ( IJITCS )

Abstract :

Changes in EEG sleep spindles constitute a promising indicator of sleep disorders. In this paper SleepSpindles are extracted from real EEG data from patients suffering from any kind of brain illness. In this paper a triple (STFT, WT and WMSD) algorithm for sleep spindle detection is used. Its performance is studied and quantified. After the detection and isolation, an ARMA model is applied to each spindle. The mean of the parameters of the ARMA model corresponding to all the detected spindles for each patient is computed and finally, these parameters are used in a k-means clustering classification algorithm to assign a given illness to each patient.

Keywords :

:ARMA; Sleep Spindles; EEG; k-means clustering

References :

  1.  L. De Gennaro and M. Ferrara, “Sleep spindles: an overview”, Sleep Med Rev 7:423–40, 2003.
  2. J.C. Costa, M.D. Ortigueira and A. Batista, “ARMA Modelling of Sleep Spindles”, Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS'11 - IFIP AICT 349, pp 341-348, 2011.
  3. M. Steriade, E.G. Jones and Llinas, “Thalamic Oscillations and Signaling”. Neuroscience Institute Publications. New York: John Wiley & Sons, 1990.
  4.  A. Rechtschaffen and A. Kales, “A manual of standardised terminology, techniques and scoring system for sleep stages of human subjects”, Washington, DC: Public Health Service, U.S. Government Printing Office; 1968.
  5. A .Nonclercq , C. Urbain, D. Verheulpen, C. Decaestecker, P. Van Bogaert and P. Peigneux, “Sleep spindle detection through amplitude-frequency normal modelling”, Journal of Neuroscience Methods , 2010.
  6.  J. Proakis, and D. Manolakis, “Digital Signal Processing”, 4th Ed., Prentice-Hall, 2006.
  7. I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic and K. Rotim, “Energy Distribution of EEG Signal Components by Wavelet Transform”, pp45-60 IInTech publishing, 2012.
  8. J.C. Costa, M.D. Ortigueira, A. Batista and T. Paiva, “An Automatic Sleep Spindle detector based on WT, STFT and WMSD”,International Journal of the World Academy of Science, Engineering and Technology, issue 68, pp1298-1301, 2012.
  9. J.C. Costa, M.D. Ortigueira, A. Batista and T. Paiva, “Threshold choice for automatic spindle detection”. Proc. IWSSIP2012; 2012
  10. A. Kizilkaya and A. H. Kayran, “ARMA model parameter estimation based on the equivalent MA approach”. Digital Signal  Processing, Vol 16, Issue 6, 2006.
  11. J.C. Costa, M.D. Ortigueira, A. Batista and T. Paiva. “ARMA Modelling of Sleep Spindles”, Proceedings of the Doctoral  Conference on Computing, Electrical and Industrial Systems, DoCEIS'11 - IFIP AICT 349, pp 341-348, 2011.
  12. K-means clustering. (2012, August 2). In Wikipedia, The Free Encyclopedia. Retrieved 16:50, December 15, 2013, from http://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid= 505438129
  13.  K. Tekmono. (2013, March 12), in http://people.revoledu.c

Untitled Document
     
Untitled Document
   
  Copyright © 2013 IJITCS.  All rights reserved. IISRC® is a registered trademark of IJITCS Properties.