Untitled Document
You are from : ( )  
Untitled Document
Untitled Document

International Journal of Information Technology & Computer Science ( IJITCS )

Abstract :

The amount of medical knowledge is constantly growing thus providing new hope for people having health-related problems. However a challenge is to develop flexible methods to facilitate managing and interpreting large medical knowledge entities. There is a need to enhance health literacy by developing personalized health support tools. Furthermore there is a need to assist decision-making with decision support tools. The recent and on-going changes in everyday life both on technological and societal levels (for example adoption of smart phones and personal mobile medical tracking devices, social networking, open source and open data initiatives, fast growth of accumulated medical data, need for new self-care solutions for aging European population) motivate to invest in the development of new computerized personalized methods for knowledge management of medical data for diagnosis and treatment. To enable creation of new adaptive personalized health support tools we have carried out an evaluation of semantic dependencies in a conceptual co-occurrence network covering a set of concepts of a medical vocabulary with experimental results ranging up to 2994 unique nouns, 82814 unique conceptual links and 200000 traversed link steps .

Keywords :

: Personalized healthcare; health informatics; patient guidance; conceptual network; the shortest path

References :

  1. Abbott, A. (1992). From causes to events: Notes on narrative positivism. Sociological Methods & Research, 20(4), 428-55.
  2. Abell, P. (2004). Narrative explanation: An alternative to variable-centered explanation? Annual Review of Sociology, 30, 287-310.
  3. Amante, D., Hogan, T., Pagoto, S., English, T., & Lapane, K. (2015). Access to Care and Use of the Internet to Search for Health Information: Results From the US National Health Interview Survey. Journal of Medical Internet Research, 17(4): e106. doi:10.2196/jmir.4126 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430679/
  4. Ashutosh, J., Andrews, D., Fiksdal, A., Kumbamu, A., McCormick, J., Misitano, A., Nelsen, L., Ryu, E., Sheth, A., Wu, S., & Pathak, J.(2014). Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal. Journal of Medical Internet Research, 16(7). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115262/
  5. Atkinson, N., Saperstein, S., & Pleis, J. (2009). Using the internet for health-related activities: findings from a national probability sample. Journal of Medical Internet Research, 11(1): e4. doi: 10.2196/jmir.1035. http://www.jmir.org/2009/1/e4/
  6. Brown, P., Halász, S., Goodall, C., Cochrane, D., Milano, P., & Allegra, J. (2010). The ngram chief complaint classifier: A novel method of automatically creating chief complaint classifiers based on international classification of diseases groupings. Journal of Biomedical Informatics, 43(2), 268–272.
  7. Califf, R. (2014). The Patient-Centered Outcomes Research Network: A National Infrastructure for Comparative Effectiveness Research. North Carolina Medical Journal, 75(3).
  8. Chuang, M., Lin, C., Wang, Y., & Cham, T. (2010). Development of pictographs depicting medication use instructions for low-literacy medical clinic ambulatory patients. Journal of Managed Care Pharmacy, 16(5), 337-345.
  9. Cohen, R., & Havlin, S. (2003). Scale-free networks are ultrasmall. Physical Review Letters 90(5):058701.
  10. Coulter, A., Parsons, S., & Askham, J. (eds.) (2008). Where are the patients in decision-making about their own care? World Health Organiztion, Policy brief. Health Systems and Policy  Analysis. WHO Regional Office for Europe and European Observatory on Health Systems and Policies. http://www.who.int/management/general/decisionmaking/WhereArePatientsinDecisionMaking.pdf
  11. Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.
  12. Curé, O., Maurer, H., Shah, N., & Pendu, P. (2015). A formal concept analysis and semantic query expansion cooperation to refine health outcomes of interest. BMC Medical Informatics and Decision Making, 15(Suppl 1):S8.
  13. Densen, P. (2011). Challenges and opportunities facing medical education. Transaction of the American Clinical and Climatoligal Association 122, 48–58.
  14. Doidge, N. (2007).The brain that changes itself: stories of personal triumph from the frontiers of neuroscience. Viking Press, USA.
  15. Duyck, W., Vanderelst, D., Desmet, T., & Hartsuiker, R. (2008). The frequency effect in second-language visual word recognition. Psychonomic Bulletin & Review, 15(4), 850-855. http://users.ugent.be/~wduyck/articles/DuyckVanderelstDesmetHartsuiker2008.pdf
  16. Ferrer i Cancho, R., & Solé, R. (2001). The small world of human language. Proc. of the Royal Society of London, B., 268, 2261-2265.
  17. FAU Erlangen-Nürnberg (2015). The Google Web 1T 5-Gram Database - SQLite Index & Web Interface - Collocations.
  18. http://corpora.linguistik.uni-erlangen.de/demos/cgi-bin/Web1T5/Web1T5_colloc.perl
  19. Feldman, M., & Pentland, B. (2003). Reconceptualizing organizational routines as a source of flexibility and change. Administrative Science Quarterly, 48, 94-118.
  20. Fields, R. (2005). Making memories stick. Scientific American, 292 (February 2005), 74-81.
  21. Giddens, A. (1984). The Constitution of Society. University of California Press, Berkeley, CA, USA.
  22. Goode, A., Sukthankar, R., Mummert, L., Chen, M., Saltzman, J., Ross, D., Szymanski, S., Tarachandani, A., & Satyanarayanan, M. (2008). Distributed Online Anomaly Detection in High-Content Screening. Proc. IEEE International Symposium on Biomedical Imaging (ISBI).
  23. Harvey, C., & Svoboda, K. (2007). Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature, 450(7173).
  24. Hayes. G., Lee, C., & Dourish, P. (2011). Organizational routines, innovation, and flexibility: the application of narrative networks to dynamic workflow. International Journal of Medical Informatics, 80(8): e161-77. doi: 10.1016/j.ijmedinf.2011.01.005. http://www.gillianhayes.com/wp-content/uploads/2012/08/J11_IJMI_NarrativeNetworks.pdf
  25. Henriksson, A. (2013). Semantic spaces of clinical text. Leveraging Distributional Semantics for Natural Language Processing of Electronic Health Records. Licentiate Thesis, Department of Computer and Systems Sciences, Stockholm University. https://www.diva-portal.org/smash/get/diva2:653288/FULLTEXT01.pdf
  26. Higgins, O., Sixsmith, J., Barry, M., Dmegan, C. (2011). A literature review on health information seeking behaviour on the web: a health consumer and health professional perspective. European Centre for Disease Control, Stockholm, Sweden. http://www.ecdc.europa.eu/en/publications/Publications/Literature%20review%20on%20health%20information-seeking%20behaviour%20on%20the%20web.pdf.
  27. Hsu, Y., & Kao, H. (2013). CoIN: a network analysis for document triage. Database, The Journal of Biological Databases and Curation, Volume 2013, article id bat076.
  28. Huang, Y., Lin, H., Hsu, Y., & Lin, J. (2012). Using n-gram analysis to cluster heartbeat signals. BMC Medical Informatics and Decision Making 2012, 12:64.
  29. Izura, C., & Ellis, A. (2002). Age of acquisition effects in word recognition and production in first and second languages. Psicológica, 23, 245-281. http://www.uv.es/revispsi/articulos2.02/4.IZURA%26ELLIS.pdf
  30. Kalenscher, T., & Tobler, P. (2008). Interdisciplinary Perspectives on Decision Making: Introduction. Cognitive, Affective, & Behavioral Neuroscience, 8(4), 345-347.
  31. Kamvar, M., & Baluja, S. (2006). A large scale study of wireless search behavior: Google mobile search. Proc. Conference on Human Factors in Computing Systems (CHI '06), 701–709. http://www1.cs.columbia.edu/~mkamvar/publications/CHI_06.pdf
  32. Kandel, E. (2001). The molecular biology of memory storage: a dialog between genes and synapses. Nobel Lecture, 8 December 2000. Bioscience Reports, 21(5).
  33. Karlgren, J., Bohman, M., Ekgren, A., Isheden, G., Kullmann, E., & Nilsson, D. (2014). Semantic Topology. Proc. Conference on Information and Knowledge Management (CIKM 2014), Shanghai, China. http://gavagai.se/wp-content/uploads/2014/11/km0697-karlgren.pdf
  34. Kummervold, P., Chronaki, C., Lausen, B., Prokosch, H., Rasmussen, J., Santana, S., Staniszewski, A., & Wangberg, S. (2008). eHealth trends in Europe 2005-2007: a population-based survey. Journal of Medical Internet Research, 10(4): e42. doi: 10.2196/jmir.1023. http://www.jmir.org/2008/4/e42/
  35. Lahti, Lauri (2015c). Educational exploration along the shortest paths in conceptual networks based on co-occurrence, language ability levels and frequency ranking. Proc. E-Learn - World Conference on E-Learning, 19-22 October 2015, Kona, Hawaii, USA. Association for the Advancement of Computing in Education (AACE), Chesapeake, VA, USA. http://www.editlib.org/p/151985/ (Open access: http://urn.fi/URN:NBN:fi:aalto-201509294488)
  36. Lahti, Lauri (2015a). Computer-assisted learning based on cumulative vocabularies, conceptual networks and Wikipedia linkage. Doctoral dissertation. Department of Computer Science, Aalto University School of Science, Finland. Unigrafia Oy, Helsinki, Finland. ISBN 978-952-60-6163-4 (printed), ISBN 978-952-60-6164-1 (pdf).(Open access: http://urn.fi/URN:ISBN:978-952-60-6164-1)
  37. Lahti, Lauri (2016b). Semantic modeling of healthcare guidelines to support health literacy and patient engagement. Accepted to appear in Proc. Global Learn 2016: Global Conference on Learning and Technology, 28-29 April 2016, Limerick, Ireland. Association for the Advancement of Computing in Education (AACE), Chesapeake, VA, USA. http://urn.fi/URN:NBN:fi:aalto-201603291477
  38. Lauri, Lahti (2016c). Supplement to Lauri Lahti's conference article ”Evaluation of semantic dependencies in a conceptual co-occurrence network of a medical vocabulary”, to appear online at http://aaltodoc.aalto.fi.
  39. Larkey, L., & Croft, W. (1996). Combining classifiers in text categorization. Proc. 19th annual international ACM SIGIR conference on Research and development in information retrieval, 289–297. ACM.
  40. Latour, B. (2005). Reassembling the Social: An Introduction to Actor-Network Theory. Oxford University Press, Oxford, UK.
  41. Laufer, B. (1989). What percentage of text-lexis is essential for comprehension? In C. Lauren and M. Nordman (eds.), Special Language: From Humans Thinking to Thinking Machines. Multilingual Matters, Clevedon, UK.
  42. Leech, G., Rayson, P., & Wilson, A. (2001). Word frequencies in written and spoken English: based on the British National Corpus. Longman, London, United Kingdom. ISBN 0582-32007-0. (A companion web site: Frequency lists. Chapter 5: Rank frequency lists of words within word classes (parts of speech) in the whole corpus. List 5.1: Frequency list of nouns (by lemma). Online available
  43. at: http://ucrel.lancs.ac.uk/bncfreq/flists.html and http://ucrel.lancs.ac.uk/bncfreq/lists/5_1_all_rank_noun.txt)
  44. Marling, C., Montani, S., Bichindaritz, I., & Funk, P. (2014). Synergistic case-based reasoning in medical domains. Expert Systems with Applications 41, 249–259.
  45. Mikolov, T., Le, Q., & Sutskever, I. (2013). Exploiting  similarities  among  languages for  machine  translation. Proc. International Conference on Language Research (ICLR 2013), Scottsdale, Arizona, USA. http://arxiv.org/pdf/1309.4168v1.pdf
  46. Nadel, L., Ryan, L., Hayes, S., Gilboa, A., & Moscovitch, M. (2003). The role of the hippocampal complex in long-term episodic memory. International Congress Series 1250, 215-234. http://www.u.arizona.edu/~nadel/pdf/Papers%20as%20PDFs/2003%20PDFS/Nadel%20Toyama%202003.pdf
  47. Nation, P., & Waring, R. (1997). Vocabulary size, text coverage, and word lists. In Schmitt, N., & McCarthy, M. (eds.), Vocabulary: Description, Acquisition, Pedagogy. Cambridge University Press, New York, USA, 6-19.
  48. Newman, M. (2000). Models of the small world. Journal of Statistical Physics, 101(3/4), 819-841.
  49. O’Malley, A., & Marsden, P. (2008). The analysis of social networks. Health Services and Outcomes Research Methodology, 8(4), 222–269.
  50. Pajevic, S., & Plenz, D. (2009). Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches. PLoS Computational Biology 5(1): e1000271.
  51. Payne, P. (2012). Chapter 1: Biomedical Knowledge Integration. PLoS Computational Biology, 8(12), e1002826.
  52. Pentland, B., & Feldman, M. (2008). Designing routines: On the folly of designing artifacts, while hoping for patterns of action. Information and Organization, 18(4), 235-50.
  53. Pentland, B., & Feldman, M. (2008). Designing routines: On the folly of designing artifacts, while hoping for patterns of action. Information and Organization, 18(4), 235-50.
  54. Qazvinian, V., & Radev, D. (2012). A Computational Analysis of Collective Discourse. Proc. Collective Intelligence conference 2012, 18-20 April 2012, Massachusetts Institute of Technology.
  55. Ruttenberg, A., Clark, T., Bug, W., Samwald, M., Bodenreider, O., Chen, H., Doherty, D., Forsberg, K., Gao, Y., Kashyap, V., Kinoshita, J., Luciano, J., Marshall, M., Ogbuji, C., Rees, J., Stephens, S., Wong, G., Wu, E., Zaccagnini, D., Hongsermeier, T., Neumann, E., Herman, I., & Cheung, K. (2007). Advancing translational research with the Semantic Web. BMC Bioinformatics, Volume 8, Suppl 3.
  56. Sadasivam, R., Kinney, R., Lemon, S., Shimada, S., Allison, J., & Houston, T. (2013). Internet health information seeking is a team sport: analysis of the Pew Internet Survey. International Journal of Medical Informatics, 82(3), 193–200. doi: 10.1016/j.ijmedinf.2012.09.008.
  57. Sarkar, K. (2013). A Hybrid Approach to Extract Keyphrases from Medical Documents. International Journal of Computer Applications, 63(18).
  58. Spink, A., Wolfram, D., Jansen, M., & Saracevic, T. (2001). Searching the web: The public and their queries. Journal of the American Society for Information Science and Technology 52 (3): 226–234. https://faculty.ist.psu.edu/jjansen/academic/jansen_public_queries.pdf
  59. Stanfill,  M., Williams, M., Fenton, S., Jenders, R., & Hersh, W. (2010). A systematic literature review of automated clinical coding and classification systems. Journal of the American Medical Informatics Association, 17(6), 646–651. U.S. National  Library  of  Medicine (2016). Medical  Subject  Headings (MeSH). https://www.nlm.nih.gov/mesh/meshhome.html
  60. Stratton, P., & Wiles, J. (2010). Self-sustained non-periodic activity in networks of spiking neurons: The contribution of local and long-range connections and dynamic synapses. NeuroImage 52, 1070-1079.
  61. Sulakhe, D., Balasubramanian, S., Xie, B., Berrocal, E., Feng, B., Taylor, A., Chitturi, B., Dave, U., Agam, G., Xu, J., Börnigen, D., Dubchak, I., Gilliam, T., & Maltsev, N. (2014). High-throughput translational medicine: challenges and solutions. Advances in Experimental Medicine and Biology, 799, 39-67.
  62. Thalheimer, W. (2006). Spacing learning over time: what the research says. Will Thalheimer, Work-Learning Research Inc., Somerville, Massachusetts, USA (published March 2006, reformatted 2010). Online available at http://willthalheimer.typepad.com/files/spacing_learning_over_time_2006.pdf
  63. Tripathy, B., Acharjya, D., & Cynthya, V. (2011). A framework for intelligent medical diagnosis using rough set with formal concept analysis. International Journal of Artificial Intelligence & Applications 2(2).
  64. Wang, J., Liang, S., & Ge, G. (2008). Establishment of a Medical Academic Word List. English for Specific Purposes, 27, 442–458. http://ecourse.uoi.gr/pluginfile.php/93039/mod_resource/content/0/medical_academic_word_list.pdf
  65. Wang, T., Wongsuphasawat, K., Plaisant, C., & Shneiderman, B. (2011). Extracting insights from electronic health records: Case studies, a visual analytics process model, and design recommendations. Journal of Medical Systems, 35(5), 1135–1152.
  66. Wangberg, S., Andreassen, H., Prokosch, H., Santana, S., Sorensen, T., & Chronaki, C (2008). Relations between Internet use, socio-economic status (SES), social support and subjective health. Health Promotion International, 23(1), 70–7. doi: 10.1093/heapro/dam039published.
  67. White, R., & Horvitz, E. (2009). Cyberchondria: Studies of the Escalation of Medical Concerns in Web Search. Proc. ACM Transactions on Information Systems (TOIS), 27(4), article 23. http://research.microsoft.com/en-us/um/people/ryenw/papers/whitetr-2008-178.pdf
  68. Workman, T., Rosemblat, G., Fiszman, M., & Rindflesch, T. (2013). A Literature-Based Assessment of Concept Pairs as a Measure of Semantic Relatedness. Proc. American Medical Informatics Association (AMIA) 2013, 1512–1521.
  69. Yanardag, P., & Vishwanathan, S. (2015). Deep Graph Kernels. Proc. 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1365-1374. http://web.ics.purdue.edu/~ypinar/kdd/deep_graph_kernels.pdf
  70. Yen, J. (1971). Finding the k shortest loopless paths in a network. Management Science, 17(11), 712-716.
  71. Zhou,  X.,  Menche,  J.,  Barabasi,  A.,  &  Sharma,  A. (2014).   Human  symptoms-disease  network. Nature Communications, 5, 4212. http://www.nature.com/ncomms/2014/140626/ncomms5212/abs/ncomms5212.html
  72.  This journal article is an extended and corrected version of the conference article "Lahti, Lauri (2016a). Evaluation of semantic dependencies in a conceptual co-occurrence network of a medical vocabulary. Proc. 5th International Conference on Human Computing, Education and Information Management System (ICHCEIMS 2016), 27-28 March 2016, Sydney, Australia. (Open access: http://urn.fi/URN:NBN:fi:aalto-201603291476)".

Untitled Document
Untitled Document
  Copyright © 2013 IJITCS.  All rights reserved. IISRC® is a registered trademark of IJITCS Properties.