Untitled Document
Untitled Document
   
User Name
Password
 
   
You are from : ( )  
     
Untitled Document
Untitled Document
 

International Journal of Information Technology & Computer Science ( IJITCS )

Abstract :

Arabic has a very rich and complex morphology. Its appropriate Morphological processing is very important  for Information Retrieval, Text Processing, Machine  Translation and Spell Checking processes. The efforts  to improve Arabic information search and retrieval  compared to other languages are limited and modest,  even though the Arabic language is the official language  for over 29 countries, in addition to which there are  native Arabic speakers scattered all over the world. The  barrier to text processing advancements in Arabic is its  complicated morphological structure.
In this paper, we propose a new stemming technique  and produce software implementation ”‘AMA”’ for the  proposed technique that tries to determine the root and/or  the stem of a word representing the semantic core of this  word according to Arabic language morphology analysis  and Arabic language syntax.

Keywords :

Arabic morphology, Computational  linguistics, Stemming, Information retrieval

References :

  1. William B. Frakes and Christopher J. Fox Strength and similarity of affix removal stemming algorithms, SIGIR Forum,  volume 37, number 1, year 2003, pages 26-30
  2. Ricardo A. Baeza-yates Text Retrieval: Theory and Practice  In 12th IFIP World Computer Congress, volume I,  pages 465–476, 1992.
  3. Al-Shammari, Eiman and Lin, Jessica A novel Arabic  lemmatization algorithm In Proceedings of the second  workshop on Analytics for noisy unstructured text data ,  pages 113–118, 2008.
  4. Sembok, Tengku Mohd T. and Ata, Belal Mustafa Abu and  Bakar, Zainab Abu A rule-based Arabic stemming algorithm  In Proceedings of the 5th European conference on  European computing conference, pages 392–397, 2011.
  5. Eiman Tamah Al-Shammari and Jessica Lin Towards an  error-free Arabic stemming In CIKM-iNEWS, pages 9–16,  2008.
  6. Leah S. Larkey and Lisa Ballesteros and Margaret E. Connell  Improving stemming for Arabic information retrieval:  light stemming and co-occurrence analysis In SIGIR, pages  275-282, 2002.
  7. Y. Kadri, J.Y. Nie Effective stemming for Arabic information  retrieval In SIGIR, pages 68–74, 2006.
  8. Nizar Habash Introduction to Arabic Natural Language  Processing In Synthesis Lectures on Human Language  Technologies, book, 2010.
  9. 1987.  ¨ _Atfm. ,dm_. ¨l. .yq__ ,¨.A_r_. r¡Aq. db.  . 1 ª ,T.AFr. TsF¥. ,.rO.
  10. http://www.alecso.org.tn, 2007,  T.l. ¨ §rOt. ¤ .AqtJ¯ A\. ,wb.   ¤r.  ..¤± C d}³ ,Ty_r`.
  11. Khoja, S. Stemming Arabic Text Department, Lancaster  University.
  12. Mohammed Aljlayl and Ophir Frieder On arabic search:  improving the retrieval effectiveness via a light stemming  approach In Proceedings of the 2002 ACM CIKM International  Conference on Information and Knowledge Management,  McLean, VA, USA, pages 340-347, 2002.
  13. Darwish, Kareem and Oard, Douglas and Darwish, Kareem  and Oard, Douglas W. Adapting Morphology  for Arabic Information Retrieval<sup>*</sup>  Arabic Computational Morphology In Arabic Computational  Morphology, volume 38, 2007

Untitled Document
     
Untitled Document
Copyright © 2009 - 2013 - IJITCS