Untitled Document
Untitled Document
User Name
You are from : ( )  
Untitled Document
Untitled Document

International Journal of Information Technology & Computer Science ( IJITCS )

Abstract :

The key condition for reliable work of electric  power systems is the presence of efficient system forecasting of state variables (load flows, power flow,  voltage magnitude, etc.). Development of the state-of-theart  technique for robust forecasting of behavior of  nonlinear and non-stationary power systems is one of the  challenges in energetics. This paper aims to evaluate Data  mining type of models for short-term forecasting of power  system operating condition. Models that are examined  include artificial neural networks, support vector  machines; autoregressive integrated moving average and  exponential smoothing. Evaluation results are presented  for voltage magnitude forecasts.

Keywords :

: power system; data mining; forecasting; data  analysis, model, state variables

References :

  1. Dabbaghchi, R. D. Christie, G. W. Rosenwald, and C. C. Liu; AI  Application Areas in Power Systems, IEEE Intelligent Systems, vol. 12, n. 1, pp. 58-66; 1997.
  2. C. C. Liu, D. Pierce, H. Song; Intelligent System Applications to Power  Systems; IEEE Computer Applications in Power, vol 10, n. 4; 1997.
  3. A.J. McGrail, E. Gulski et al. "Data Mining Techniques to Asses the  Condition of High Voltage Electrical Plant". CIGRE WG 15.11 of Study Committee 15.
  4. Fayyad, Usama; Gregory Piatetsky-Shapiro, and Padhraic Smyth. "From  Data Mining to Knowledge Discovery in Databases", American  Association for Artificial Intelligence, 37, 1997.
  5. Data Mining Curriculum". ACM SIGKDD. 2006-04-30. Retrieved  2011-10-28.
  6. Clifton, Christopher (2010). "Encyclopædia Britannica: Definition of  Data Mining". Retrieved 2010-12-09.
  7. Ian H. Witten; Eibe Frank; Mark A. Hall (30 January 2011). Data  Mining: Practical Machine Learning Tools and Techniques (3 ed.).  Elsevier. ISBN 978-0-12-374856-0.
  8. R.R. Bouckaert; E. Frank; M.A. Hall; G. Holmes; B. Pfahringer; P.  Reutemann; I.H. Witten (2010). "WEKA Experiences with a Java opensource  project". Journal of Machine Learning Research 11: 2533–2541.
  9. P.K. Dash, H.S. Behera, I.W.C. Lee “Time sequence data mining using  time–frequency analysis and soft computing techniques”, Appl. Soft  Comput. J. (2007), doi:10.1016/j.asoc.2007.01.001
  10. A. Pellicel, G. Cássio1, M. Aurélio A. Lopes, Luiz Eduardo Borges da  Silva, Erik Leandro Bonaldi, Levy Ely de Lacerda de Oliveira, Jonas  Guedes Borges da Silva, G. Lambert-Torres, and P. Rodrigues  “Intelligent Data Mining for Turbo-Generator Predictive Maintenance:  An Approach in Real-World”, Proc. of the International Workshop on  Soft Computing Applications and Knowledge Discovery (SCAKD  2011), Moscow, Russia, June 25, 2011.
  11. He YueShun , Ding QiuLin. Fault Mode Analyze of Power System  Based on Data Mining. Proc. of the 2009 International Symposium on  Web Information Systems and Applications (WISA’09) Nanchang, P. R.  China, May 22-24, 2009, Pp. 318-320
  12. Tso, S.K., Lin, J.K., Ho, H.K., Mak, C.M., Yung, K.M., Ho, Y.K.  “Data mining for detection of sensitive buses and influential buses in a  power system subjected to disturbances”, IEEE Trans in Power Systems,  Vol. 19, No. 1, February, 2004. Pp. 563-568
  13. Lionel Fugon, Jeremie Juban and George Kariniotakis. “Data mining for  wind power forecasting”, Proc. of the European Wind Energy  Conference - Brussels, Belgium, April 2008
  14. Box P., Jenkins G.M. Time Series Analysis: Forecasting and Control;  Holden-day Inc, San Francisco, CA, 1976
  15. Zhang G., Patuwo B.E., Hu M.Y. (1998), Forecasting with artificial  neural networks: The state of the art; International Journal of  Forecasting 14; 35– 62.
  16. Khashei M., Bijari M. (2011), A novel hybridization of artificial neural  networks and ARIMA models for time series forecasting; Applied Soft  Computing 11; 2664–2675.
  17. Haykin S. Neural networks. A comprehensive foundation. Second  edition / S. Haykin. - Williams Publishing House, 2006. - 1104 p.
  18. Huawang Shi, Wanqing Li. “Evoving Artificial Neural Networks Using  Simulated Anneling-based Hybrid Genetic Algorithms”, Journal of  Software, Vol. 5, No. 4, April 2010
  19. Kurbatsky V., Sidorov D., Spiryaev V., Tomin N. On the Neural  Network Approach for Forecasting of Nonstationary Time Series on the  Basis of the Hilbert–Huang Transform. Automation and Remote  Control, 2011, Vol. 72, No. 7, 2011, Pp. 1405–1414.
  20. Cristianini, Nello; and Shawe-Taylor, John; An Introduction to Support  Vector Machines and other kernel-based learning methods, Cambridge  University Press, 2000.
  21. V. G. Kurbatsky, D. N. Sidorov, V.A. Spyryaev, N. V. Tomin. The  Hybrid Model based on Hilbert-Huang Transform and Neural Networks  for Forecasting of Short-Term Operation Conditions of Power System.  Proc. of the IEEE International Conference “PowerTech’2011”,  Trondheim, Norway, 2011.
  22. Kurbatsky V., Sidorov D., Spiryaev V., Tomin N. On the Neural  Network Approach for Forecasting of Nonstationary Time Series on the  Basis of the Hilbert–Huang Transform. Automation and Remote  Control, 2011, Vol. 72, No. 7, 2011, Pp. 1405–1414.
  23. N. I. Voropai, A. M. Glazunova, V.G. Kurbatsky, D.N. Sidorov, V. A.  Spiryaev, N.V. Tomin. Operating Conditions Forecasting for Monitoring  and Control of Electric Power Systems / Proc. the IEEE ISGT Europe  2010 Conference, Gothenburg, Sweden, 2010.
  24. Huang N.E., Zheng Shen, Steven R. Long, et al. The Empirical Mode  Decomposition and The Hilbert Spectrum for Non-linear and Nonstationary  Time Series Analysis // Proc. Royal Soc. London, V. 454, Ser.  A: Math., Phys. and Engineer. Sci., V. 454. No. 1971. (8 March 1998).  P. 903--995.
  25. Rilling G., Flandrin P., Goncalves P. “On Empirical Mode  Decomposition and its Algorithms”, IEEE-EURASIP Workshop on  Nonlinear Signal and Image Processing NSIP-03, Grado (I), June 2003

Untitled Document
Untitled Document
Copyright © 2009 - 2013 - IJITCS