Untitled Document
You are from : ( )  
Untitled Document
Untitled Document

International Journal of Information Technology & Computer Science ( IJITCS )

Abstract :

This paper proposes techniques for visualizing asymmetric relations using clusters and directed graphs. The techniques of asymmetric clustering and generation of directed graphs shown here are relatively unknown and partly new. Web information types handled here include tweets in Twitter, entries in Wikipedia, and statistical data on the web. Since this study in on-going, we show a limited number of examples with simple descriptions, but application possibilities of the methods herein are enormous.

Keywords :

: web information; asymmetric relation;directed graph; agglomerative hierarchical clustering

References :

  1. M. A. Russell, Mining the Social Web, O’Reilly, 2011.
  2. M. E. J. Newman, Fast algorithms for detecting community structure in networks, arXiv:cond-mat/0309508v1, 22 Sep 2003.
  3. T. Saito, H. Yadohisa, Data Analysis of Asymmetric Structures, Marcel Dekker, New York, 2005.
  4. https://gephi.org
  5. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
  6. B. S. Everitt, S. Landau, M. Leese, D. Stahl, Cluster Analysis, 5th ed., Wiley, 2011.
  7. S. Miyamoto, Fuzzy Sets in Information Retrieval and Cluster Analysis, Kluwer, 1990.
  8. S. Takumi, S. Miyamoto, Text Clustering Using a Multiset Model, Proc. of the 2011 IEEE International Conference on Granular Computing (GrC2011), Nov. 8-10, 2011, Kaohsiung, Taiwan, pp.630-635, 2011.
  9. S. Takumi, S. Miyamoto, Agglomerative Clustering Using Asymmetric Similarities, V. Torra et al. eds., MDAI 2011, LNAI 6820, Springer, pp.114-125, 2011.
  10. S. Miyamoto, Fuzzy Multisets and Their Generalizations, in C.S.Calude et al., eds., Multiset Processing, Lecture Notes in Computer Science, LNCS 2235, Springer, Berlin, pp.225-235, 2001

Untitled Document
Untitled Document
  Copyright © 2013 IJITCS.  All rights reserved. IISRC® is a registered trademark of IJITCS Properties.